
MPCAuth: Multi-factor Authentication
for Distributed-trust Systems

Sijun Tan Weikeng Chen Ryan Deng Raluca Popa

UC Berkeley

Appeared at IEEE S&P 2023



Overview of distributed-trust systems

2

x
x = [x]1⨁[x]2⨁[x]3

[x]1 [x]2

[x]3

MPC
Secure multi-party

computation
[Yao86],[BGW88],…

The attacker needs to compromise all servers to recover the client’s secrets.



Applications of distributed-trust systems

3
Lots of other applications: Collaborative ML (e.g. Meta, Ant group), Secret key
recovery (e.g. Signal) .

MPC

Cryptocurrency wallet
(e.g. Fireblocks, Coinbase, ZenGo,…)



4

How to authenticate to distributed-trust systems?



Strawman 1: Authenticate to one master server.

5

A malicious attacker can compromise this 
one server to recover the secrets.

The client needs to authenticate to all 
servers to ensure security.

Other servers trust the master server.



Strawman 2: Authenticate to each of N servers

6

Avoids a central point of attack.

Problem: The client needs to authenticate 
to N servers NxM times, one for each of the 
M factors.

M



Problem: Burdensome user experience

7The client needs to receive N emails and enter passcodes N times!

Email server
(smtp.gmail.com)



Our system: MPCAuth

8

In addition, hides the user’s authentication profiles. (e.g. email username, 
phone number, passwords, biometric features)

Type Factors

Possession Email, SMS, U2F

Knowledge Passcode, Pin, Security Questions

Inherence Biometrics

An authentication system for distributed-trust applications in which the 
user authenticates only once.



Threat model

The attacker cannot successfully authenticate 
as an honest user, if at least one server and
one authentication factor is not compromised.

9

● An attacker can corrupt up to N-1 out of 
N servers.

● The attacker tries to impersonate a 
client.



MPCAuth’s Email Authentication



Traditional email authentication 

11

App server Email server
(smtp.gmail.com)

TLS



Email authentication for distributed-trust systems

12

App servers
Email server
(smtp.gmail.com)

The N servers jointly act as one logical server to interact with the email server.

TLS

Logical Server

Inside MPC:
1. Assemble an email with

one passcode.
2. Send encrypted packets

over the TLS channel.

MPC



Email authentication for distributed-trust systems

13

App servers
Email server
(smtp.gmail.com)

The N servers jointly act as one logical server to interact with the email server.

TLS

Logical Server

MPC



TLS-in-MPC

TLS Handshake: Jointly perform Diffie-Hellman key exchange.

14

Data transmission: Jointly run an authenticated encryption scheme to encrypt 
messages and transmit them over the network.

Email server
(smtp.gmail.com)

TLS

𝑥, 𝑔! 𝑦, 𝑔"𝑔!"



TLS handshake in MPC

15

Email server
(smtp.gmail.com)

TLS

𝑥#, 𝑔!!

𝑥$, 𝑔!"
𝑥%, 𝑔!#

𝑔! 𝑦, 𝑔"

Each party locally samples 𝑥!, computes 𝑔"! and sends it to the relaying party.

𝑔! ≔ 𝑔!!(!"(!#



TLS handshake in MPC

Each party locally computes 𝑔#"! , which forms the secret share [𝑔"#]

16

Email server
(smtp.gmail.com)

TLS

𝑔"!!

𝑔"!"
𝑔"!#

𝑔!, 𝑔" 𝑦, 𝑔"

[sk] :=KDF([gxy])



Authenticated encryption in MPC

17

Compute authenticated encryption in MPC with secret-shared sk and message.

Email server
(smtp.gmail.com)

TLS

[sk]1

[sk]2

[sk]3

enc,mac:=AES-GCM([sk], [msg])[sk] :=KDF([gxy])



Implication of TLS-in-MPC

18

● Data is secret-shared at rest.
● During transmission, data is encrypted in MPC with a secret-shared

encryption key.
● None of the server sees any plaintext data during the whole process. 

The protocol itself is extendable to use cases beyond authentication. 

Email server
(smtp.gmail.com)

TLS



MPCAuth’s email authentication protocol

19

App servers Email server
(smtp.gmail.com)

s1

s2
s3

s=s1⊕s2⊕s3

TLS

s
The client app computes 
and sends 𝝅 := PRF(s, i) to 
server i

The client receives 
passcode s and enters 
it into the app. 

PRF(s,1)

PRF(s,2)

s

PRF(s,3)

The passcode s is hidden from all servers.



MPCAuth’s email authentication protocol

20

App servers Email server
(smtp.gmail.com)

[addr]1

TLS

s

● The client only enters the passcode once on the client app.
● The client’s email username is hidden from all servers. 

[addr]2
[addr]3



MPCAuth’s U2F Authentication



Traditional U2F authentication

22

During registration, U2F generates a key pair and stores the public key
to the server.

sk

pk

App server



Traditional U2F authentication

23

During authentication, U2F produces a signature over the app server’s
challenge. The app server verifiers the signature.

sk

pk

App server

c

c



U2F authentication under distributed trust

24

Naively, the user needs to tap the U2F button N times.

sk

c1

c2

c3

c1

c2

c3



Strawman 2: Negotiate a joint challenge

25

sk

c

c1

c2

c3

Idea: Negotiate a joint challenge, verify individually.

Does not prevent against replay attacks.

c



Designing an authentication protocol

26

sk

c

Main Takeaway:
1) The U2F signs a single joint challenge.
2) Each server needs to verify its local challenge.
3) Each server’s local challenge needs to be kept secret.

MPC works but there is an even simpler solution.

c1

c2

c3

c



MPCAuth’s U2F authentication protocol

28

sk
Root

H(C1) H(C2) H(C3) H(C4)

H(L1,L2)

Root

H(L3,L4)

Ci := Commit(ci, ri)

c1

c2

c3

c4

The client app:
1) Commits to each local challenge ci with ri.
2) Builds a Merkle tree over Ci.
3) Produce a signature over the root hash.



MPCAuth’s U2F authentication protocol

29

sk

c1

c2

c3

c4The client app sends to server i:
1) The Merkle root hash.
2) The Merkle opening proof for leave i πi.

3) The signature over the root hash.
4) The randomness ri.

(sig, root, πi, ri)

(sig, root, π1, r1)

(sig, root, π2, r2)

(sig, root, π3, r3)

(sig, root, π4, r4)



MPCAuth’s U2F authentication protocol

30

sk

c1

c2

c3

c4Each server i checks:
1) The signature is over the root hash.
2) Ci is included in the Merkle tree.

3) Ci is a commitment of ci.

(sig, root, πi, ri)

(sig, root, π1, r1)

(sig, root, π2, r2)

(sig, root, π3, r3)

(sig, root, π4, r4)



MPCAuth’s U2F authentication protocol

31

sk

c1

c2

c3

c4

● The user only signs one signature over the joint challenge.
● Each server receives a different response.
● Each server verifies both the joint challenge, as well as their

local challenge (by checking commitment opening)

(sig, root, πi, ri)

(sig, root, π1, r1)

(sig, root, π2, r2)

(sig, root, π3, r3)

(sig, root, π4, r4)



MPCAuth’s Biometrics Authentication



Client-side biometric authentication

33

● Alice scans her biometrics to unlock her secret key.
● Alice signs a signature over the verifier’s challenge.
● The server verifies that the signature is correct.

sk
c

pk

App server

MPCAuth’s U2F authentication protocol works.



Server-side biometric authentication

34

● Alice scans her biometrics, the client device locally process it, and
sends the feature vector to the server.

● The server verifies that the feature vector is closed to the registered one.

App server

Poses huge privacy risks as the app server needs to store the
feature vector in plaintext!



MPCAuth’s biometric authentication

35

During registration, Alice secret-shares the feature vector v1 to the
servers.



MPCAuth’s biometric authentication

36

During authentication, Alice produces a feature vector v2. The
server performs an L2 distance check between v1 and v2.

𝐿! �⃗�, �⃗� = ((𝑥"−𝑦")!

MPC



Implementation & Evaluation

Implemented the system using MP-SPDZ, 
EMP-AGMPC, and WolfSSL.

37

Server-to-server bandwidth: 2Gbit/s 
Client-to-server bandwidth: 100Mbit/s. 

Evaluated the system on 2-5 AWS 
c5n.2xlarge 3.0GHz 8 core CPU. 

3PC Offline Online Total

Email Auth 2.9s 0.4s 3.3s

3PC Offline Online Total

Email Auth 10.9s 1.3s 12.2s

Without established TLS

With established TLS

Works with existing email provider (Gmail) with no timeout.



Evaluation of TLS-in-MPC

38

N=2 N=3 N=4 N=5

Offline 7.4s 8.1s 11.1s 14.8s

Offline latency of TLS-in-MPC

N=2 N=3 N=4 N=5

Offline 0.7s 0.9s 1.1s 1.4s

Online latency of TLS-in-MPC

Given the low online latency, TLS-in-MPC can be scaled
to a larger number of parties with no TLS timeout (15s).



Summary of MPCAuth
An authentication system for distributed trust applications.

● Enables a client to authenticate independently to N servers 
by doing the work of only one authentication.

● Design secure, practical, and profile-hiding protocols for 
multiple authentication factors.

40

Paper: https://eprint.iacr.org/2021/342.pdf

Thank you!

Email: sijuntan@berkeley.edu

https://eprint.iacr.org/2021/342.pdf
http://Berkeley.edu

